Syntheses of $4^{\prime \prime}$-epi-Amino-4"-deoxyavermectins B_{1}

Raymond J. Cvetovich,* Dennis H. Kelly, Lisa M. DiMichele, Richard F. Shuman, and Edward J. J. Grabowski
Department of Process Research, Merck Research Laboratories, Division of Merck \& Co., Inc., P.O. Box 2000, Rahway, New Jersey 07065

Received January 14, 1994 ${ }^{\text {² }}$

Abstract

A practical synthesis of $4^{\prime \prime}$-epi-aminoavermectins is described. High-yielding imine formation from $4^{\prime \prime}$-oxo-5-O-(allyloxycarbonyl)avermectin B_{1} (5a) was effectively accomplished using hexa- or heptamethyldisilazane/zinc chloride. Subsequent reduction with sodium borohydride provided the $4^{\prime \prime}$-epi-amines $10 a, b$ and 12 , respectively, in $85-90 \%$ yields from ketone. Synthesis of ketone 5a was accomplished by highly selective and high-yielding monoprotection of avermectin $B_{1}(3)$ to afford the C_{5}-allylcarbonate 4 followed by oxidation of the C_{4}-hydroxyl (phenyl dichloro phosphate, DMSO, and TEA). Reductive amination was followed by removal of the allyl carbonate protecting group with $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4} \mathrm{Pd}(0)-\mathrm{NaBH}_{4}$. Acidic methanol removal of the $\mathrm{C}_{7}-\mathrm{OH}$ trimethylsilyl groups, followed by crystallization as the benzoic acid salts, gave the desired $4^{\prime \prime}$ epi-(methylamino)- $4^{\prime \prime}$-deoxyavermectin B_{1} benzoate (1c, MK-244, emamectin benzoate) or $4^{\prime \prime}$-epi-amino-4"-deoxyavermectin B_{1} benzoate ($\mathbf{1 4 b}$), respectively, in 60% overall yields.

Introduction

The avermectins form a class of highly functionalized pentacyclic natural products containing a 16 -membered macrocyclic lactone, a spirocyclic ketal, and a 4-(α-L-oleandrosyl)- α-L-oleandrose disaccharide group attached at the $\mathrm{C}_{13}-\mathrm{OH}$ position, and are prepared by fermentation with the avermectin-producing strain of Streptomyces avermitilis. They are among the most potent naturally occurring anthelmintic, insecticidal, and acaricidal compounds known.

The antiparasitic activity of the avermectins ${ }^{1}$ toward a host of both endo- and ecto-parasites has been successfully commercialized in animals and in crop protection, as exemplified by "abamectin" (avermectin B_{1}) and "ivermectin". ${ }^{2}$ This has stimulated the search for newer, novel, and more potent avermectin derivatives. Recently, a new class of aminoavermectins was reported which demonstrated considerably improved insecticidal activity against neonate Spodoptera eriidania larvae. ${ }^{3}$ Among the members of this new class, $4^{\prime \prime}$ epi-(methylamino) $4^{\prime \prime}$ deoxyavermectin B_{1} (1a) was shown to be one of the most effective reported, with a 1500 -fold increase in potency vs avermectin B_{1} (AVM B_{1}) against the beet armyworm Spodoptera exigua in a diet incorporation assay. ${ }^{4 \mathrm{a}}$ Other studies have shown the hydrochloride salt (1b, MK-243) ${ }^{\text {b }}$ to be effective against a wide variety of lepidoptera, ${ }^{4 a}$

[^0]spider mites, ${ }^{4 b}$ aphids, ${ }^{4 b}$ ticks, ${ }^{4 b}$ and other agricultural pests. ${ }^{4 \mathrm{c}}$ Likewise, $4^{\prime \prime}$-epi-amino-4-deoxyavermectin B_{1} (14a, L-653,649) ${ }^{3 a-c}$ and its N -acetylated derivative (2, MK-397) ${ }^{\text {sd }}$ (Figure 1) have also shown interesting anthelmintic activity.

This paper discusses the preparation of two closely related derivatives: $4^{\prime \prime}$ epi-(methylamino)-4"-deoxyavermectin B_{1} benzoate (1c, MK-244, emamectin benzoate), and $4^{\prime \prime}$-epi-(acetylamino)-4"-deoxyavermectin $\mathrm{B}_{1}(2$, MK397) and highlights the use of disilazane-mediated reductive amination chemistry for the introduction of amine functionality to the avermectins. By contrast, traditional reductive amination reaction conditions failed to complete imine formation and led to epimerization at the basesensitive C_{2} position. This synthesis began with a highly selective protection of the C_{5}-hydroxyl group of avermectin B_{1} in a nonchlorinated solvent by the use of TMEDA with allyl chloroformate and ended with its efficient deprotection in the presence of an amine group using $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4} \mathrm{Pd}(0)-\mathrm{NaBH}_{4}$. This work provides the basis for an efficient large scale synthesis of these potent second generation avermectins.

Results and Discussion

Among the variety of methods available for the conversion of equatorial cyclohexanols to axially configured cyclohexylamines, reduction of an intermediary imine still remains prominent. ${ }^{6}$ In the case of our targeted aminoavermectins, 1 and 2, preparation of an appropriately protected $4^{\prime \prime}$-oxoavermectin derivative serves as a common intermediate to both. Protection of the C_{5}. hydroxy group of AVM $B_{1}(3)$ in the presence of the C_{7} and C_{4}-hydroxyl groups, using tert-butyldimethylsilyl chloride ${ }^{3 a}$ (TBDMSCl) and imidazole, optimally gave an 87:13 ratio of mono:bis ($5: 4^{\prime \prime}, 5$) protected AVM B ${ }_{1}$, with no reaction at the highly hindered C_{7}-hydroxyl group. As an alternative to silicon-based protecting groups, the

[^1]

1a: $\mathrm{R}_{1}=\mathrm{CH}_{3} \mathrm{NH} ; 1 \mathrm{~b}: \mathrm{R}_{1}=\mathrm{CH}_{3} \mathrm{NH} \cdot \mathrm{HCl}[\mathrm{MK}-243] ;$
1c: $\mathrm{R}_{1}=\mathrm{CH}_{3} \mathrm{NH} \cdot \mathrm{HCO}_{2} \mathrm{Ph}[\mathrm{MK}-244]$
2: $\mathrm{R}_{1}=\mathrm{CH}_{3} \mathrm{CONH}$ [MK-397]
Figure 1. MK-244 and MK-397.

${ }^{a}$ Key: (i) MTBE, TMEDA, allyl chloroformate; (ii) $\mathrm{PhOPOCl}_{2}$, TEA, DMSO, IPAC.
selective acylation ${ }^{7}$ with allyl chloroformate ${ }^{8}$ was explored. The reaction of allyl chloroformate/triethylamine with AVM $\mathrm{B}_{1}(3)$ to prepare the mono protected avermectin 4 (Scheme 1) showed chemosensitivity to the solvent chosen as the reaction vehicle. In THF and ethyl acetate poor selectivity resulted ($\sim 50: 50$, mono:bis), but chlorinated solvents (methylene chloride, 1,1,1-trichloroethane) produced product ratios of $93: 7$ (mono:bis). A remarkable increase in selectivity in nonchlorinated solvent was observed when $N, N, N^{\prime}, N^{\prime}$-tetramethyl-1,2-ethylenediamine (TMEDA) was substituted for TEA. In THF or tert-butyl methyl ether (MTBE) the mono:bis ratio of protected avermectins increased from 50:50 to $97: 3$.

Oxidation of 5-O-(allyloxycarbonyl) (AOC) AVM B_{1} (4) was smoothly accomplished using the phenyl dichloro

[^2]Scheme 2. Reductive Amination and Deprotection ${ }^{a}$

14b: $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{NH}_{2} \cdot \mathrm{HCO}_{2} \mathrm{Ph}, \mathrm{R}_{3}=\mathrm{R}_{4}=\mathrm{H}$
15: $\mathrm{R}_{1}=\mathrm{H}_{1} \mathrm{R}_{2}=\mathrm{N}_{2}\left[\mathrm{CH}_{3}\right] \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}, \mathrm{R}_{3}=\mathrm{R}_{4}=\mathrm{H}$
${ }^{a}$ Key: (i) $\mathrm{CH}_{3} \mathrm{NH}_{2}$, $\mathrm{HOAc}, \mathrm{NaCNBH}_{3}$; (ii) $\mathrm{NH}_{3}, \mathrm{HOAc}, \mathrm{NaC}-$ NBH_{3}; (iii) $\mathrm{HxMDS}, \mathrm{ZnCl}_{2}$, i-PrOAc; EtOH, NaBH_{4}; (iv) HpMDS, ZnCl_{2}, i- PrOAc ; EtOH, NaBH_{4}; (v) $\mathrm{Pd}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4}(0), \mathrm{MeOH}, \mathrm{NaBH}_{4}$; H^{+}; (vi) $\mathrm{Ac}_{2} \mathrm{O}$, i-PrOAc.
phosphate (PDCP)-mediated Pfitzner-Moffat oxidation ${ }^{9}$ in methylene chloride or in nonchlorinated solvents like isopropyl acetate ($i-\mathrm{PrOAc}$) to afford ketone $\mathbf{5 a}$ (Scheme 1) in 90% yield.

Reductive amination of $4^{\prime \prime}$-oxo-5-O-TBDMS AVM B_{1} (5b) $\left(\mathrm{CH}_{3} \mathrm{NH}_{2} / \mathrm{HOAc} \text { in THF and } \mathrm{NaCNBH}_{3} \text { in ethanol }\right)^{3 \mathrm{a}}$ gave rise to a complex mixture (Scheme 2) containing the desired $4^{\prime \prime}-e p i-\mathrm{CH}_{3} \mathrm{NH}-5-O-T B D M S ~ A V M ~ B ~(6) ~(50 \%), ~$ the isomeric $4^{\prime \prime}-\mathrm{CH}_{3} \mathrm{NH}-5-O-T B D M S ~ A V M ~ B ~ B ~(7) ~(10 \%), ~$ $4^{\prime \prime}-\mathrm{CN}-4^{\prime \prime}-\mathrm{CH}_{3} \mathrm{NH}-5-\mathrm{O}-\mathrm{TBDMS}$ AVM $\mathrm{B}_{1}(8)(10 \%)$, and an epimeric mixture of $4^{\prime \prime}$-hydroxy AVM $\mathrm{B}_{1}(20-30 \%$, resulting from incomplete imine formation). Epimerization at the C_{2} position ($5-20 \%$) also occurred during the course of the reaction, with greater amounts present in samples that were aged longer or at higher temperatures during imine formation. Imine reduction with NaBH_{4} increased the stereoselectivity of hydride addition and eliminated the cyanoamine byproduct to give amine 6 in 65% yield, but C_{2} epimerization and incomplete imine formation remained as the major sources of yield loss.
Similar reductive amination studies using ammonium acetate $/ \mathrm{NaBH}_{4}$ to make $4^{\prime \prime}-e p i-\mathrm{NH}_{2}-5-\mathrm{O}-\mathrm{TBDMS}$ AVM B ${ }_{1}$ (9) gave maximized yields of 25%, with the greatest loss occurring from incomplete imine formation. The use of stronger acid (ammonium chloride), molecular sieves, or a variety of Lewis acids failed to significantly influence the outcome.
(9) Liu, H.-J.; Nyangulu, J. M. Tetrahedron Lett. 1988, 3167.

An alternative to the thermodynamically controlled dehydration step involved in imine formation with ammonia was achieved by the use of hexamethyldisilazane (HxMDS) with a Lewis acid. ${ }^{6 d, 10}$ The reaction of ketone 5 a with $\mathrm{HxMDS} / \mathrm{ZnCl}_{2}$ in i - PrOAc followed by the addition of NaBH_{4} and EtOH (Scheme 2) resulted in an 84% overall yield of $4^{\prime \prime}$-epi-amino products $\mathbf{1 0 a}(56 \%)$ and $10 b$ (28%) along with a minor amount of the isomeric amine 11 , with less than 3% ketone reduction products and no detectable epimerization at the labile C_{2} position. Silylated byproduct $10 b$ is formed from 10a under the reaction conditions in variable yield depending on the temperature, age period, and the amount of excess HxMDS present. This byproduct is readily deprotected along with 10a and converted into the same aminoavermectin, 14a.

Imine formation using heptamethyldisilazane (Hp $\mathrm{MDS}) / \mathrm{ZnCl}_{2}$ on ketone 5a, followed by reduction with NaBH_{4}, resulted in an 81% yield of methylamine derivative 12 , along with a minor amount of 13 (Scheme 2) with the same degree of control of imine formation and absence of C_{2} epimerization as demonstrated in the preparation of $\mathbf{1 0 a}, \mathrm{b}$.

While imine formation with HxMDS or HpMDS was sluggish with ZnCl_{2} unless a stoichiometric amount was employed at $50^{\circ} \mathrm{C}$, a significant rate acceleration was achieved using $\mathrm{Zn}\left(\mathrm{OCOCF}_{3}\right)_{2}$, which could be used in catalytic ($10 \mathrm{~mol} \%$) quantities.

Methods for the removal of AOC-protecting groups include: PtO_{2} or $\mathrm{Pd}-\mathrm{C} / \mathrm{H}_{2},{ }^{7}$ sodium/ammonia, ${ }^{7}$ phosphonium iodide, ${ }^{7}$ nickel carbonyl, ${ }^{11}$ and soluble palladium-(0)-catalyzed cleavage in conjunction with a variety of nucleophiles. ${ }^{12}$ Attempts to use $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4} \mathrm{Pd}(0)$ with formic acid ${ }^{12 f}$ as the nucleophile led to significant amounts (5$20 \%$) of N -allylated byproduct $15 .{ }^{12 \mathrm{a}, f}$ Deprotection of 10a,b or 11 using sodium borohydride ${ }^{13,14}$ in ethanol with $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4} \mathrm{Pd}(0)$ reductively trapped the reactive palladium intermediate, resulting in the complete elimination of the N -allylation. Subsequent removal of the 7-O-TMS groups in acidified ethanol solution was followed by crystallization of 1a or 14a as their benzoic acid salts (1c and 14b, respectively). The final preparation of MK-397 (2) was accomplished by acylation of aminoavermectin 14a (or

[^3]its benzoate salt 14b) with acetic anhydride and crystallization from acetonitrile.
This work has demonstrated several important features in aminoavermectin chemistry: a highly selective monoprotection of the C_{5}-hydroxyl group of avermectin B_{1} with allyl chloroformate in the presence of TMEDA; a high-yielding reductive amination of a $4^{\prime \prime}$-ketone by conversion to an imine using disilazanes $/ \mathrm{ZnCl}_{2}$ followed by reduction with NaBH_{4}; and the use of $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4} \mathrm{Pd}(0)-$ NaBH_{4} to remove an allyloxy carbonate protecting group in the presence of an amine group avoiding the formation of N -allyl byproducts. All of these features have been combined to give a high-yielding nonchromatographic route to crystalline MK-244 (1c) and MK-397 (2) and provides the basis of large scale preparation of their intermediates and products.

Experimental Section

General. HPLC analyses were performed using a SpectraPhysics SP8700 ternary solvent delivery system, a Vydac C18 protein/peptide column (5 mm particle size, $4.6 \times 150 \mathrm{~mm}$) reversed-phase column, solvent system A:B (acetonitrile:water, with 0.1 vol \% TFA in each) at $25^{\circ} \mathrm{C}, 3.0 \mathrm{~mL} / \mathrm{min}$, with UV detection at 245 nm . Samples of each product were isolated and purified by column chromatography (E. Merck silica gel 60, 230-400 mesh ASTM using ethyl acetate:hexanes mixtures) for characterization. All reactions were carried out under an atmosphere of N_{2}, and the following solvents and reagents were dried (where needed) over $3 \AA$ or $4 \AA$ molecular sieves prior to use: MTBE, THF, EtOH, i-PrOAc, TEA, TMEDA, DMSO, and MeOH. Other solvents and reagents were used as received. Karl Fisher water analyses of reaction mixtures and solvents were carried out on a Metrohm 684 KF Coulometer and were generally in the $50-100 \mu \mathrm{~g} / \mathrm{mL}$ range. Infrared spectra were recorded on a Perkin-Elmer 1420 ratio recording infrared spectrophotometer. Melting points were determined using a DuPont 9900 DSC $\left(2^{\circ} \mathrm{C} / \mathrm{min}\right.$, under N_{2} in an open cup) and are reported as a range from the DSC extrapolated onset temperature to the peak temperature. Proton and carbon-13 spectra were recorded in CDCl_{3} on a Bruker AM-400 at a frequency of 400.13 and 100.16 MHz , respectively. The chemical shifts are reported in ppm relative to residual CHCl_{3} for proton ($\delta=7.27 \mathrm{ppm}$) and CDCl_{3} for carbon ($\delta=77.0 \mathrm{ppm}$). All coupling constants are reported in Hz , and the following proton multiplicites are abbreviated as follows: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ mulitiplet, om $=$ overlapping multiplets, $\mathrm{br}=$ broad. Highresolution mass spectroscopy studies were performed in the FAB mode. Avermectin B_{1} was used as the mixture of $B_{1 a}$ and $\mathrm{B}_{1 \mathrm{~b}}$ components available as "abamectin".
5-O-(Allyloxycarbonyl)avermectin B_{1} (4). Allyl chloroformate (5.50 mL , 51.6 mmol) in MTBE (15 mL) was added dropwise over 20 min to a solution of avermectin B_{1} (3) (39.1 $\mathrm{g}, 44.9 \mathrm{mmol}$) and TMEDA ($5.20 \mathrm{~g}, 44.9 \mathrm{mmol}$) in MTBE (200 mL) at $-15{ }^{\circ} \mathrm{C}$ to give a white precipitate. The reaction mixture was aged for 1.5 h at -10 to $-15{ }^{\circ} \mathrm{C}$ and then poured into 2% aqueous $\mathrm{H}_{3} \mathrm{PO}_{4}(125 \mathrm{~mL})$. The organic phase was separated and evaporated in vacuo to give 4 as a solid white foam (52.4 g). HPLC assay: gradient, solvent $\mathrm{A}: \mathrm{B}=65: 35$ to 75:25 over 15 min ; results: $4\left(\mathrm{~B}_{1 \mathrm{~b}}: t_{\mathrm{R}}=6.1 \mathrm{~min} ; 3.5 \mathrm{~g}, 3.7\right.$ $\mathrm{mmol} ; \mathrm{B}_{1 \mathrm{a}}: t_{\mathrm{R}}=7.8 \mathrm{~min} ; 38.3 \mathrm{~g}, 40.0 \mathrm{mmol}$); yield $=97 \%$ (vs a wt $\%$ standard). ${ }^{1} \mathrm{H}$ NMR: $\delta 5.94$ (ddt, $J=17.1,10.4,5.8$, $1 \mathrm{H}), 5.85(\mathrm{~m}, 1 \mathrm{H}), 5.78-5.71(\mathrm{~m}, 3 \mathrm{H}), 5.57(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.55$ (dd, $J=10.0,2.7,1 \mathrm{H}), 5.42-5.34$ (om, 4 H), 5.27 (m, 1 H), 4.99 ($\mathrm{m}, 1 \mathrm{H}$), 4.77 (d, $J=3.0,1 \mathrm{H}), 4.70-4.66$ (om, 3H), 4.61 (dd, J $=14.3,2.1,1 \mathrm{H}), 4.12(\mathrm{~d}, J=6.0,1 \mathrm{H}), 3.99(\mathrm{~s}, \mathrm{OH}), 3.93(\mathrm{br} \mathrm{s}$, 1 H), 3.88-3.80 (om, 2 H), 3.77 ($\mathrm{dq}, J=9.4,6.3,1 \mathrm{H}$), 3.62 (m, 1 H), $3.51-3.45$ (om, 2 H), 3.43 (S, 3 H), 3.42 ($\mathrm{s}, 3 \mathrm{H}$), 3.37 (q, J $=2.3,1 \mathrm{H}), 3.24(\mathrm{t}, J=9.0,1 \mathrm{H}), 3.16(\mathrm{br} t, J=9.2,1 \mathrm{H}), 2.58$ (d, $J=1.5, \mathrm{OH}), 2.52(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.20(\mathrm{om}, 5 \mathrm{H}), 2.02(\mathrm{dd}$, $J=7.4,1.4,1 \mathrm{H}$), $1.81(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.81-1.76$ ($\mathrm{om}, 1 \mathrm{H}$), 1.621.45 (om, 6 H), $1.49(\mathrm{~s}, 3 \mathrm{H}), 1.27$ (d, $J=6.3,3 \mathrm{H}), 1.25(\mathrm{~d}, J=$ $6.3,3 \mathrm{H}), 1.16(\mathrm{~d}, J=6.9,3 \mathrm{H}), 0.96-0.87$ (om, 10 H). ${ }^{13} \mathrm{C}$ NMR:
$\delta 173.5,154.9,139.3,138.1,136.3,135.2,133.1,131.5,127.8$, $124.8,121.6,120.4,118.7,118.3,98.5,95.8,94.9,81.9,80.9$, $80.4,79.4,78.2,77.5,76.1,74.9,73.6,68.8,68.6,68.5,68.4$, $68.1,67.3,56.5,56.4,45.8,40.5,39.8,36.6,35.2,34.5,34.2_{6}$, $34.2_{3}, 30.6,27.5,20.2,19.7,18.4,17.7,16.4,15.1,13.0,12.1$. IR (CCl_{4}) $\lambda_{\text {max }} 3500,3480,1745,1715,1460,1370,1290,1260$, $1160,1100,1065,990 \mathrm{~cm}^{-1}$. HRMS: $[\mathrm{M}+\mathrm{Li}]^{+}=963.5302$ (calcd $=963.5292$).

4"-Oxo-5-O-(allyloxycarbonyl)avermectin B_{1} (5a). A solution of $\mathrm{PhOPOCl}_{2}(7.7 \mathrm{~mL}, 52.0 \mathrm{mmol})$ in $i-\mathrm{PrOAc}(15 \mathrm{~mL})$ was added dropwise over 1 h to a solution of 5-O-AOC AVM $\mathrm{B}_{1}(4)(29.7 \mathrm{~g}, 30.6 \mathrm{mmol}$ by assay), DMSO ($8.7 \mathrm{~mL}, 122 \mathrm{mmol}$), and TEA $(21.3 \mathrm{~mL}, 153 \mathrm{mmol})$ in $i-\operatorname{PrOAc}(160 \mathrm{~mL})$ at -15 ${ }^{\circ} \mathrm{C}$. The mixture was aged for 1 h at $-15^{\circ} \mathrm{C}$ and then poured into 1% aqueous $\mathrm{H}_{3} \mathrm{PO}_{4}$. The aqueous phase was extracted with $i-\operatorname{PrOAc}(3 \times 50 \mathrm{~mL})$, and the combined organic phases were washed with saturated aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and evaporated in vacuo to give $\mathbf{5 a}$ as a yellowish solid (37.6 g). HPLC assay: sample preparation, ${ }^{15} 40.0 \mathrm{mg}$ of crude ketone in 0.5 mL EtOH was treated with 4 mg of NaBH_{4} for 2 min to give a mixture of $\mathrm{C}_{4} \cdots-\mathrm{OH}$ epimers and then diluted to 100 mL with acetonitrile; gradient, solvent $A: B=65: 35-75: 25$ over 15 min ; results ($4^{\prime \prime}$-epi-OH B $\mathrm{B}_{1 \mathrm{~b}}: t_{\mathrm{R}}=5.4 \mathrm{~min} ; 1.77 \mathrm{~g}, 1.87 \mathrm{mmol}$; $\mathrm{B}_{1 \mathrm{a}}: t_{\mathrm{R}}=6.80 \mathrm{~min}, 19.2 \mathrm{~g}, 20.1 \mathrm{mmol} ; 4^{\prime \prime}-\mathrm{OH} \mathrm{B}_{1 \mathrm{~b}}: t_{\mathrm{R}}=6.0$ $\mathrm{min}, 0.42 \mathrm{~g}, 0.44 \mathrm{mmol} ; \mathrm{B}_{1 \mathrm{a}}: t_{\mathrm{R}}=7.8 \mathrm{~min}, 4.99 \mathrm{~g}, 5.2 \mathrm{mmol}$; total $=27.6 \mathrm{mmol}$); assay yield $=90 \%$ (vs a wt \% standard). ${ }^{1} \mathrm{H}$ NMR: $\delta 5.94$ (ddt, $\left.J=17.1,10.4,5.6,1 \mathrm{H}\right), 5.86(\mathrm{~m}, 1 \mathrm{H})$, $5.78-5.72(\mathrm{om}, 3 \mathrm{H}), 5.57-5.53(\mathrm{om}, 2 \mathrm{H}), 5.40-5.34(\mathrm{om}, 4 \mathrm{H})$, $5.26(\mathrm{~m}, 1 \mathrm{H}), 5.00(\mathrm{~m}, 1 \mathrm{H}), 4.80(\mathrm{br} \mathrm{d}, J=2.8,1 \mathrm{H}), 4.70-4.65$ (om, 3 H), $4.61(\mathrm{dd}, J=14.2,2.0,1 \mathrm{H}), 4.42(\mathrm{q}, J=6.6,1 \mathrm{H})$, $4.20(\mathrm{dd}, J=11.7,6.4,1 \mathrm{H}), 4.12(\mathrm{~d}, J=6.1,1 \mathrm{H}), 4.00(\mathrm{~s}, \mathrm{OH})$, $3.94(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.93-3.83(\mathrm{om}, 2 \mathrm{H}), 3.68(\mathrm{~m}, 1 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H})$, $3.49(\mathrm{dd}, J=10.1,1.3,1 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{q}, J=2.2,1 \mathrm{H})$, 3.33 (t, $J=8.8,1 \mathrm{H}$), 2.58 (ddd, $J=12.8,6.4,1.8,1 \mathrm{H}$), 2.53 $(\mathrm{m}, 1 \mathrm{H}), 2.32-2.23(\mathrm{om}, 4 \mathrm{H}), 2.13(\mathrm{~m}, 1 \mathrm{H}), 2.02(\mathrm{dd}, J=9.2$, $2.9,1 \mathrm{H}$), 1.82 (br s, 3 H), 1.81-1.76 (om, 1 H), 1.64-1.46 (om, $5 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~d}, J=6.6,3 \mathrm{H}), 1.27(\mathrm{~d}, J=6.2,3 \mathrm{H})$, $1.17(\mathrm{~d}, J=6.9,3 \mathrm{H}), 0.97-0.91$ (om, 9 H$), 0.88(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 205.9,173.5,154.9,139.4,137.9,136.3,135.1,133.2$, $131.5,127.8,124.9,121.5,120.4,118.7,118.4,98.1,95.8,95.0$, $82.1,81.3,80.9,79.2,78.1,77.5,74.9,73.6,70.8,68.8,68.5_{3}$, $68.5_{0}, 68.4,67.0,58.3,56.5,45.8,40.9,39.7,39.5,36.6,35.2$, $34.6,34.3,30.6,27.5,20.3,19.7,18.4,16.4,15.1,13.9,13.0$, 12.1. IR $\left(\mathrm{CCl}_{4}\right) \lambda_{\text {max }}: 3460,2990,2940,1750,1718,1455,1375$, $1270,1205,1165,1130,1060,990 \mathrm{~cm}^{-1}$. HRMS: $[\mathrm{M}+\mathrm{Li}]^{+}=$ $961.5144($ calcd $=961.5136)$.
$4^{\prime \prime}$-epi-Amino-5-O-(allyloxycarbonyl)-4"-deoxyavermec$\operatorname{tin} \mathbf{B}_{1}(\mathbf{1 0 a}, \mathrm{~b})$. A mixture of crude ketone $5 \mathrm{a}(26.3 \mathrm{~g}, 27.5$ mmol by assay), hexamethyldisilazane ($15.3 \mathrm{~g}, 94.7 \mathrm{mmol}$), and ZnCl_{2} ($4.16 \mathrm{~g}, 30.5 \mathrm{mmol}$) in $i-\operatorname{PrOAc}(135 \mathrm{~mL})$ was warmed to $50{ }^{\circ} \mathrm{C}$, aged for 4 h , and then cooled to $5{ }^{\circ} \mathrm{C}$. $\mathrm{NaBH}_{4}(3.25 \mathrm{~g}$, 85.9 mmol) and $\mathrm{EtOH}(50 \mathrm{~mL})$ were added, while the temperature was maintained at $<10^{\circ} \mathrm{C}$, and the mixture was aged for 1 h at $20^{\circ} \mathrm{C}$. The mixture was treated dropwise with 10% aqueous acetic acid (100 mL) and aged for 15 min . The pH of the mixture was adjusted to 8.0 with 5 N aqueous NaOH and the precipitated zinc salts were filtered. The aqueous phase was extracted with $i-\operatorname{PrOAc}(3 \times 50 \mathrm{~mL})$, and the combined organic phases were evaporated in vacuo to give 10a,b as a yellowish solid (37.2 g). HPLC assay: gradient, solvent A:B $=50: 50-85: 15$ over 20 min ; results: 10a ($t_{\mathrm{R}}: \mathrm{B}_{1 \mathrm{~b}}=7.0 \mathrm{~min}$, $\left.\mathrm{B}_{1 \mathrm{a}}=8.0 \mathrm{~min} ; 14.7 \mathrm{~g}, 15.4 \mathrm{mmol}\right) ; \mathbf{1 0 b}\left(t_{\mathrm{R}}: \mathrm{B}_{1 \mathrm{~b}}=11.6 \mathrm{~min} ; \mathrm{B}_{1 \mathrm{a}}\right.$ $=12.0 \mathrm{~min} ; 7.9 \mathrm{~g}, 7.7 \mathrm{mmol}) ; 14\left(t_{\mathrm{R}:} \mathrm{B}_{1 \mathrm{~b}}=2.7 \mathrm{~min} ; \mathrm{B}_{1 \mathrm{a}}=3.1\right.$ $\min ; 0.5 \mathrm{~g}, 0.6 \mathrm{mmol}) ; \mathbf{1 1}\left(t_{\mathrm{R}}: \mathrm{B}_{1 \mathrm{~b}}=7.4 \mathrm{~min} ; \mathrm{B}_{1 \mathrm{a}}=8.8 \mathrm{~min} ; 1.1\right.$ $\mathrm{g}, 1.2 \mathrm{mmol}$); assay yield $=86 \%$ (vs a wt \% standard).

10a. ${ }^{1} \mathrm{H}$ NMR: $\delta 5.94$ (ddt, $J=17.2,10.5,5.8,1 \mathrm{H}$), 5.85 (m, 1H), 5.77-5.01 (om, 3H), 5.57 (br s, 1 H), 5.54 (dd, $J=9.9$, $2.6,1 \mathrm{H}), 5.42-5.34(\mathrm{om}, 4 \mathrm{H}), 5.26(\mathrm{~m}, 1 \mathrm{H}), 4.98(\mathrm{~m}, 1 \mathrm{H}), 4.77$ $(\mathrm{d}, J=3.1,1 \mathrm{H}), 4.70-4.58(\mathrm{om}, 4 \mathrm{H}), 4.12(\mathrm{~d}, J=6.1,1 \mathrm{H})$, 4.00 (br q, $J=6.3,1 \mathrm{H}$), 3.93 (br s, 1 H), 3.88-3.80 (om, 2 H),

[^4]$3.63-3.55$ (om, 2H), 3.48 (dd, $J=9.8,1.1,1 \mathrm{H}$), 3.43 (s, 3 H), $3.37(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{~mm}, 1 \mathrm{H}), 3.22$ (t, $J=9.0,1 \mathrm{H}), 3.05(\mathrm{br} \mathrm{d}, J$ $=2.0,1 \mathrm{H}), 2.51(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.16(\mathrm{om}, 5 \mathrm{H}), 2.02(\mathrm{~m}, 1 \mathrm{H})$, 1.92 (dd, $J=13.0,5.0,1 \mathrm{H}$), 1.81 (br s, 3 H), $1.80-1.75$ (om, 1 H), $1.62-1.41$ (om, 5 H), $1.49(\mathrm{~s}, 3 \mathrm{H}), 1.24$ (od's, J $\sim 6.3,6 \mathrm{H}$), $1.15(\mathrm{~d}, J=6.9,3 \mathrm{H}), 0.96-0.83(\mathrm{om}, 10 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 173.4$, $154.8,139.3,138.0,136.3,135.2$, 133.1, 131.5, 127.8, 124.8 , $121.6,120.4,118.7,118.3,98.7,95.8,95.0,82.0,80.9,80.6,79.4$, $77.5,75.2,74.9,73.6,68.8,68.5_{4}, 68.49,68.3_{7}, 67.3,66.1,56.7$, $55.3,50.9,45.8,40.5,39.8,36.6,35.2,34.6,34.3,30.6,29.7$, $27.5,20.2,19.7,18.3,17.3,16.4,15.1,13.0,12.1$. IR (CCl_{4}) $\lambda_{\text {max }}$: $3500,2990,2930,1745,1715,1450,1370,1240,1160$, 1110, $990 \mathrm{~cm}^{-1}$. HRMS: $[\mathrm{M}+\mathrm{Li}]^{+}=962.5426(\mathrm{calcd}=$ 962.5452).

10b. ${ }^{1} \mathrm{H}$ NMR: $\delta 5.95$ (ddt, $J=17.3,10.6,5.6,1 \mathrm{H}$), $5.77-$ $5.61(\mathrm{om}, 5 \mathrm{H}), 5.52(\mathrm{dd}, J=2.6,9.9,1 \mathrm{H}), 5.40-5.35(\mathrm{om}, 2 \mathrm{H})$, $5.32(\mathrm{br} \mathrm{d}, J=5.5,1 \mathrm{H}), 5.27(\mathrm{~m}, 1 \mathrm{H}), 5.11-5.01(\mathrm{om}, 2 \mathrm{H})$, $4.80(\mathrm{br} \mathrm{d}, J=3.2,1 \mathrm{H}), 4.67(\mathrm{~m}, 2 \mathrm{H}), 4.62(\mathrm{om}, 2 \mathrm{H}), 4.17$ (d, $J=6.0,1 \mathrm{H}), 4.03-3.81(\mathrm{om}, 4 \mathrm{H}), 3.67-3.56(\mathrm{om}, 2 \mathrm{H}), 3.46$ (br d, $J=10.0,1 \mathrm{H}$), 3.42 (s, 3 H), 3.37 (s, 3 H), 3.25 ($\mathrm{om}, 2 \mathrm{H}$), $3.08(\mathrm{~m}, 1 \mathrm{H}), 2.56(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.18(\mathrm{om}, 5 \mathrm{H}), 1.96-1.76$ (om, $3 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.70-1.38(\mathrm{om}, 4 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.34-1.24$ (om, 7 H), $1.19(\mathrm{~d}, J=7.0,3 \mathrm{H}), 0.97-0.82$ (om, 10 H$), 0.15(\mathrm{~s}$, $9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 169.9,155.1,139.4,137.2,136.0,135.1$, $131.5,130.0,128.1,125.0_{0}, 124.9_{7}, 121.6,118.7,118.6,98.6$, $95.8,95.1,84.5,82.0,80.4,79.2,77.6,75.1,74.9,73.8,68.7$, $68.3,68.0,67.8,67.2,66.0,56.5,55.3,50.9,47.1,40.9,40.0$, $36.3,35.3,34.5,34.2,30.5,29.8,27.5,20.2,19.7,18.3,17.4$, $16.4,15.1,13.0,12.1,2.1$ (3C). IR (CCl 4) $\lambda_{\text {max }}$: 3400, 2990, 2940 , $1740,1450,1370,1305,1255,1160,1110,990 \mathrm{~cm}^{-1}$. HRMS: $[\mathrm{MH}]^{+}=1028.5784(\mathrm{calcd}=1028.5766)$.
$4^{\prime \prime}$-epi-(Methylamino)-5-O-(allyloxycarbonyl)-7-O-(tri-methylsilyl)-4"-deoxyavermectin B_{1} (12). A mixture of ketone $5 \mathrm{a}(42.4 \mathrm{~g}, 44.4 \mathrm{mmol})$, heptamethyldisilazane $(31.9 \mathrm{~g}$, 182 mmol), and $\mathrm{ZnCl}_{2}(6.75 \mathrm{~g}, 49 \mathrm{mmol})$ in $i-\mathrm{PrOAc}(180 \mathrm{~mL})$ was warmed to $50^{\circ} \mathrm{C}$, aged for 3 h , and then cooled to $5^{\circ} \mathrm{C}$. $\mathrm{NaBH}_{4}(8.4 \mathrm{~g}, 220 \mathrm{mmol})$ and $\mathrm{EtOH}(100 \mathrm{~mL})$ were added, while the reaction temperature was maintained at $<10^{\circ} \mathrm{C}$, and aged for 1 h at $20^{\circ} \mathrm{C}$. The mixture was treated with 2 N aqueous acetic acid $(200 \mathrm{~mL})$ and aged for 15 min . The pH of the mixture was adjusted to 8.0 with 5 N aqueous NaOH , and the precipitated zinc salts were filtered. The aqueous phase was extracted with $i-\operatorname{PrOAc}(3 \times 50 \mathrm{~mL})$, and the combined organic phases were evaporated in vacuo to give 12 as a yellowish solid (71 g). HPLC assay: isocratic, solvent $\mathrm{A}: \mathrm{B}=$ $75: 25$; results: $12\left(t_{\mathrm{R}}: \mathrm{B}_{1 \mathrm{~b}}=4.9 \mathrm{~min}, \mathrm{~B}_{1 \mathrm{a}}=5.8 \mathrm{~min}, 35.98 \mathrm{~g}\right.$, 34.6 mmol ; 13 ($t_{\mathrm{R}}: \mathrm{B}_{1 \mathrm{a}}=6.9 \mathrm{~min}, 2.68 \mathrm{~g}, 2.6 \mathrm{mmol}$; and $4^{\prime \prime}$ -epi-CH ${ }_{3} \mathrm{NH}-7-$ O-TMS-4"-deoxyAVM t_{R} : $\mathrm{B}_{1 \mathrm{~b}}=2.5 \mathrm{~min}, \mathrm{~B}_{1 \mathrm{a}}=$ $3.1 \mathrm{~min}, 2.4 \mathrm{~g}, 2.5 \mathrm{mmol}$; assay yield $=83.5 \%$ (vs a wt $\%$ standard). ${ }^{1} \mathrm{H}$ NMR: $\delta 5.95$ (ddt, $J=17.4,10.6,4.8,1 \mathrm{H}$), $5.77-5.71$ (om, 5 H$), 5.51(\mathrm{dd}, J=9.9,2.6,1 \mathrm{H}), 5.40-5.33$ (om, $2 \mathrm{H}), 5.31(\mathrm{br} \mathrm{d}, J=6.0,1 \mathrm{H}), 5.26(\mathrm{~m}, 1 \mathrm{H}), 5.11-5.02$ (om , $2 \mathrm{H}), 4.79(\mathrm{br} \mathrm{d}, J=3.0,1 \mathrm{H}), 4.67(\mathrm{~m}, 2 \mathrm{H}), 4.62(\mathrm{om}, 2 \mathrm{H}), 4.16$ (d, $J=6.0,1 \mathrm{H}), 3.97-3.80(\mathrm{om}, 4 \mathrm{H}), 3.80-3.58(\mathrm{om}, 2 \mathrm{H}), 3.46$ (dd, $J=9.9,1.0,1 \mathrm{H}$), $3.41(\mathrm{~S}, 3 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 3.27-3.22$ $(\mathrm{om}, 2 \mathrm{H}), 2.66(\mathrm{brd}$, $J=3.3,1 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{om}, 1 \mathrm{H})$, $2.32-2.03$ (om, 5 H), $1.94-1.76$ (om, 3 H), 1.80 (s, 3 H), $1.65-$ $1.33(\mathrm{om}, 4 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{om}, 1 \mathrm{H}), 1.26(\mathrm{~d}, J=6.4$, $3 \mathrm{H}), 1.24(\mathrm{~d}, J=6.0,3 \mathrm{H}), 1.18(\mathrm{~d}, J=7.0,3 \mathrm{H}), 0.96-0.80$ (om, 10 H), $0.15(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 169.9,155.1,139.4,137.2$, $136.0,135.1,131.5,130.0,128.1,125.0(2 \mathrm{C}), 121.7,118.7$, $118.6,98.5,95.8,95.1,84.5,81.9,80.3,79.2,77.6,75.5,74.9$, $73.8,68.7,68.3,68.0,67.8,67.4,67.2,60.0,56.6,55.5,47.1$, $40.9,40.0,38.5,36.3,35.3,34.5,34.2,31.1,30.5,27.5,20.2$, 19.7, 18.3, 18.2, 16.4, 15.1, 12.9, 12.1, 2.1 (3C). IR (CCl_{4}) $\lambda_{\text {max }}$: $3400,2980,2940,1735,1450,1375,1305,1255,1165,1110$, $990 \mathrm{~cm}^{-1}$. HRMS: $[\mathrm{MH}]^{+}=1042.5928($ calcd $=1042.5922)$.
$4^{\prime \prime}$-epi-Amino-4"-deoxyavermectin B_{1} Benzoate (14b). A mixture of crude 4"epi-aminoavermectins 10a,b (28.4 mmol) and $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4} \mathrm{Pd}(0)(33 \mathrm{mg}, 0.028 \mathrm{mmol})$ in $\mathrm{EtOH}(150 \mathrm{~mL})$ at 5 ${ }^{\circ} \mathrm{C}$ was treated portionwise with $\mathrm{NaBH}_{4}(2.15 \mathrm{~g}, 56.8 \mathrm{mmol})$. The mixture was aged for 1 h at $5^{\circ} \mathrm{C}$, and then 12 N aqueous $\mathrm{HCl}(11 \mathrm{~mL})$ was added dropwise to destroy excess borohydride and to acidify $(\mathrm{pH}=2.5-3.0)$ the solution. This mixture was aged for 4 h at $20^{\circ} \mathrm{C}$, diluted with $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$, washed with a mixture of ethyl acetate:hexanes ($1: 1 ; 4 \times 50 \mathrm{~mL}$), made basic
with saturated aqueous $\mathrm{NaHCO}_{3}(300 \mathrm{~mL})$, and extracted with $i-\operatorname{PrOAc}(4 \times 75 \mathrm{~mL})$. The combined extracts were evaporated in vacuo to give 14a as a solid foam weighing 30.1 g . HPLC assay: gradient, solvent, $A: B=40: 60-60: 40$ over 15 min ; results: $14 \mathrm{a}\left(\mathrm{B}_{1 \mathrm{~b}}: t_{\mathrm{R}}=6.1 \mathrm{~min} ; 1.7 \mathrm{~g}, 3.5 \mathrm{mmol} ; \mathrm{B}_{1 \mathrm{a}}: t_{\mathrm{R}}=7.4\right.$ $\min ; 18.8 \mathrm{~g}, 21.6 \mathrm{mmol}$); yield $=88.4 \%$. A sample of crude $14 \mathrm{a}(20 \mathrm{~g})$ was filtered through silica gel 60 (20 g), eluting with ethyl acetate to give 11.3 g of purified product. A solution of $14 \mathbf{a}(11.3 \mathrm{~g}, 12.9 \mathrm{mmol})$ in acetonitrile (45 mL) was treated with benzoic acid ($1.72 \mathrm{~g}, 14.1 \mathrm{mmol}$) and then aged for 1 h at $20^{\circ} \mathrm{C}$ and 1 h at $0^{\circ} \mathrm{C}$ to give $4^{\prime \prime}$ epi-amino- $4^{\prime \prime}$-deoxyavermectin B_{1} benzoate ($\mathbf{1 4 b}$) (15.1 g) after filtration, washing, and drying in vacuo ($40^{\circ} \mathrm{C}, 100 \mathrm{~mm} \mathrm{Hg}$), $\mathrm{mp}=145.4-148.7^{\circ} \mathrm{C}$.

14b. ${ }^{1} \mathrm{H}$ NMR: $\delta 8.08(\mathrm{~m}, 2 \mathrm{H}), 7.53(\mathrm{~m}, 1 \mathrm{H}), 7.43(\mathrm{~m}, 2 \mathrm{H})$, $5.87(\mathrm{~m}, 1 \mathrm{H}), 5.76(\mathrm{dd}, J=9.9,1.5,1 \mathrm{H}), 5.74-5.71(\mathrm{om}, 2 \mathrm{H})$, $5.55(\mathrm{dd}, J=9.9,2.5,1 \mathrm{H}), 5.42-5.36(\mathrm{om}, 3 \mathrm{H}), 5.00(\mathrm{~m}, 1 \mathrm{H})$, 4.85 (br s, active H), 4.77 (br d, $J=3.0,1 \mathrm{H}), 4.68(\mathrm{~m}, 2 \mathrm{H})$, 4.30 (br d$, J=6.1,1 \mathrm{H}), 4.07$ (br q, $J=6.7,1 \mathrm{H}$), 3.97 (d, $J=$ $6.2,1 \mathrm{H}$), 3.93 (br s, 1 H), 3.90-3.81 (om, 3H), 3.69-3.57 (om, 2 H), 3.48 (dd, $J=9.8,1.2,1 \mathrm{H}$), 3.43 ($\mathrm{s}, 3 \mathrm{H}$), 3.40 ($\mathrm{s}, 3 \mathrm{H}$), 3.29 (q, $J=2.2,1 \mathrm{H}), 3.23(\mathrm{t}, J=9.0,1 \mathrm{H}), 2.52(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.20$ (om, 4H), 2.04-1.98 (om, 2H), 1.87 (br s, 3H), 1.80-1.73 (m, 2 H), $1.64-1.44(\mathrm{om}, 5 \mathrm{H}), 1.49(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.29(\mathrm{~d}, J=6.6,3 \mathrm{H})$, $1.23(\mathrm{~d}, J=6.2,3 \mathrm{H}), 1.16(\mathrm{~d}, J=6.9,3 \mathrm{H}), 1.10(\mathrm{~d}, J=6.8$, of $\mathrm{B}_{1 \mathrm{~b}}$ isomer), $0.96-0.91$ (om, 9 H$), 0.89(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: δ 173.7, 170.6, 139.6, 137.9 (2C), 136.3, 135.1, 132.3, 132.0, 129.8 (2C), 128.1 (2C), 127.7, 124.7, 120.4, 118.3, 118.0, 98.6, 95.8, $95.0,82.0,80.8,80.4,79.2,79.1,74.9,74.1,68.38,68.35,68.33$, $67.7,67.1,65.1,56.6,55.5,50.3,45.7,40.5,39.7,36.6,35.1$, $34.5,34.2,30.6,29.9,27.5,20.2,19.9,18.2,17.1,16.4,15.1$, 12.9, 12.0. IR (CCl_{4}) $\lambda_{\text {max }}$ 3560, 3480, 2980, 2940, 1711, 1600 , $1530,1450,1370,1160,1100,980 \mathrm{~cm}^{-1}$. HRMS: $[\mathrm{M}+\mathrm{Li}]^{+}=$ 878.5250 (calcd $=878.5241$ for free amine). Anal. Calcd for $\mathrm{C}_{55} \mathrm{H}_{79} \mathrm{NO}_{15}$ (corrected for $0.8 \mathrm{wt} \% \mathrm{H}_{2} \mathrm{O}$ content): $\mathrm{C}, 65.91 ; \mathrm{H}$, 8.03; N, 1.39. Found: C, 65.88; H, 8.13; N, 1.32.
$4^{\prime \prime}$-epi-(Methylamino)-4"-deoxyavermectin B_{1} Benzoate (1c). A solution of (methylamino) avermectin $12(8.64 \mathrm{~g}, 8.29$ $\mathrm{mmol})$ and $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4} \mathrm{Pd}(0)(5 \mathrm{mg}, 0.004 \mathrm{mmol})$ in $\mathrm{EtOH}(40 \mathrm{~mL})$ at $5{ }^{\circ} \mathrm{C}$ was treated portionwise with $\mathrm{NaBH}_{4}(0.62 \mathrm{~g}, 16.4$ mmol). The mixture was aged for 1 h , and then 12 N aqueous $\mathrm{HCl}(6.5 \mathrm{~mL})$ was added dropwise to destroy the excess borohydride and to acidify ($\mathrm{pH}=2.5-3.0$) the EtOH solution. This mixture was aged for 4 h at $20^{\circ} \mathrm{C}$, diluted with $\mathrm{H}_{2} \mathrm{O}(75$ mL), washed with a mixture of ethyl acetate:hexanes ($1: 1 ; 4$ $\times 50 \mathrm{~mL}$), made basic with saturated aqueous NaHCO_{3} (125 $\mathrm{mL})$, and extracted with $i-\operatorname{PrOAc}(4 \times 50 \mathrm{~mL})$. The combined extracts were evaporated in vacuo to give 1a as a solid foam (10.1 g). HPLC assay: gradient, solvent $\mathrm{A}: \mathrm{B}=50: 50-85: 15$ over 20 min ; results: 1 a ($\mathrm{B}_{1 \mathrm{~b}}: t_{\mathrm{R}}=4.4 \mathrm{~min}, 0.56 \mathrm{~g}, 0.6 \mathrm{mmol}$; $\mathrm{B}_{1 \mathrm{a}}: t_{\mathrm{R}}=5.64 \mathrm{~min}, 5.44 \mathrm{~g}, 6.1 \mathrm{mmol}$); assay yield $=81.6 \%$ (vs a wt \% standard). A solution of $\mathbf{1 a}(5.56 \mathrm{~g}, 6.2 \mathrm{mmol}$ by assay) in MTBE (20 mL) was treated with benzoic acid ($0.76 \mathrm{~g}, 6.2$ $\mathrm{mmol})$ and then hexanes (40 mL) was added. After aging at $25^{\circ} \mathrm{C}$ for 1 h , the mixture was cooled to $2{ }^{\circ} \mathrm{C}$, aged 2 h , then filtered. The crystals were washed with $50 \mathrm{v} \%$ MTBE in hexanes (50 mL) and dried in vacuo to give 5.7 g of $1 \mathrm{c}, \mathrm{mp}$ (DSC at $10^{\circ} \mathrm{C} / \mathrm{min}$) $=137-144^{\circ} \mathrm{C}$.

1c. ${ }^{1} \mathrm{H}$ NMR: $\delta 8.10(\mathrm{~m}, 2 \mathrm{H}), 7.53(\mathrm{~m}, 1 \mathrm{H}), 7.43(\mathrm{~m}, 2 \mathrm{H})$, $5.87(\mathrm{~m}, 1 \mathrm{H}), 5.76(\mathrm{dd}, J=9.8,1.7,1 \mathrm{H}), 5.75-5.72(\mathrm{om}, 2 \mathrm{H})$, 5.55 (dd, $J=9.8,2.6,1 \mathrm{H}), 5.43-5.37(\mathrm{om}, 3 \mathrm{H}), 5.22(\mathrm{v} \mathrm{br}$, active H$), 5.00(\mathrm{~m}, 1 \mathrm{H}), 4.76(\mathrm{br} \mathrm{d}, J=3.0,1 \mathrm{H}), 4.69(\mathrm{~m}, 2 \mathrm{H})$, $4.30(\mathrm{br} \mathrm{d}, J=6.1,1 \mathrm{H}), 4.03(\mathrm{br} \mathrm{q}, J=6.7,1 \mathrm{H}), 3.98(\mathrm{~d}, J=$ $6.2,1 \mathrm{H}), 3.94(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.88(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{dq}, J=9.1,6.2$, 1 H), 3.74 (ddd, $J=11.5,5.0,3.8,1 \mathrm{H}$), 3.58 (m, 1 H), 3.48 (dd,
$J=9.9,1.3,1 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{q}, J=2.2$, 1 H), 3.23 (dd, $J=9.1,8.7,1 \mathrm{H}$), 2.87 (br d, $J=3.8,1 \mathrm{H}), 2.67$ $(\mathrm{s}, 3 \mathrm{H}), 2.52(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.25(\mathrm{om}, 3 \mathrm{H}), 2.21$ (dd, $J=12.7$, $5.0,1 \mathrm{H}), 2.05-1.90(0 \mathrm{~m}, 2 \mathrm{H}), 1.87(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.78(\mathrm{~m}, 1 \mathrm{H})$, $1.63-1.46$ (om, 6H), 1.49 (br s, 3H), 1.34 (d, $J=6.7,3 \mathrm{H}$), 1.23 (d, $J=6.2,3 \mathrm{H}), 1.16$ (d, $J=7.0,3 \mathrm{H}), 1.11\left(\mathrm{~d}, J=7.1\right.$, of $\mathrm{B}_{1 \mathrm{~b}}$ isomer), $0.96-0.91$ (om, 9 H$), 0.89(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 173.7$, 170.9, 139.6, 138.0, 137.9, 136.3, 135.1, 132.2, 132.1, 129.9 (2C), 128.1 (2C), 127.7, 124.7, 120.4, 118.3, 118.0, 98.5, 95.7, $95.0,81.9,80.8,80.4,79.2,79.1,74.9,74.8,68.4_{2}, 68.3_{6}, 68.3_{3}$, $67.7,67.2,66.6,59.9,56.6,55.6,45.7,40.5,39.7,37.1,36.6$, $35.1,34.5,34.2,30.9,30.6,27.5,20.1,19.9,18.2,17.9,16.4$, 15.1, 12.9, 12.0. IR $\left(\mathrm{CCl}_{4}\right) \lambda_{\text {max }}: 3595,3460,2995,2940,1715$, $1455,1380,1160,1120,990 \mathrm{~cm}^{-1}$. HRMS: $[\mathrm{MH}]^{+}=886.5316$ (calcd $=886.5316$) for free amine. Anal. Calcd for $\mathrm{C}_{56} \mathrm{H}_{81}-$ $\mathrm{NO}_{15}: \mathrm{C}, 66.71 ; \mathrm{H}, 8.10 ; \mathrm{N}, 1.39$. Found: C, $66.96 ; \mathrm{H}, 7.82$; N, 1.45.
$4^{\prime \prime}$-epi-(Acetylamino)-4"-deoxyavermectin B_{1} (2). A solution of aminoavermectin 14a ($9.24 \mathrm{~g}, 10.6 \mathrm{mmol}$ by assay) in $i-\operatorname{PrOAc}(45 \mathrm{~mL})$ was cooled to $5^{\circ} \mathrm{C}$ and acetic anhydride $(1.4 \mathrm{~g}, 13.8 \mathrm{mmol})$ was added over 5 min . The mixture was aged for 1 h and then poured into saturated aqueous NaHCO_{3} $(25 \mathrm{~mL})$. The $i-\mathrm{PrOAc}$ layer was concentrated in vacuo to a yellowish solid (14.4 g) which was then dissolved into acetonitrile (35 mL) at reflux under N_{2} and crystallized by slow cooling to $2{ }^{\circ} \mathrm{C}$ over a 2 h period. The slurry was aged for 1 h and then filtered. The product was washed with cold $\left(2^{\circ} \mathrm{C}\right)$ acetonitrile (20 mL). The resulting cake was dried in vacuo at $50^{\circ} \mathrm{C}$ to give 8.00 g (82% yield) of amide 2 as a crystalline solid, $m p=163.3-165.7^{\circ} \mathrm{C}$. HPLC assay: gradient, solvent $\mathrm{A}: \mathrm{B}=45: 55-65: 35$ over 15 min ; results: 2 ($\mathrm{B}_{1 \mathrm{~b}}: t_{\mathrm{R}}=8.8 \mathrm{~min}$; $\mathrm{B}_{1 \mathrm{a}}: t_{\mathrm{R}}=10.8 \mathrm{~min}$). ${ }^{1} \mathrm{H}$ NMR: $\delta 5.86(\mathrm{~m}, 1 \mathrm{H}), 5.84-5.70(\mathrm{om}$, 3 H), 5.59 (d, $J=10.0,1 \mathrm{H}$), 5.55 (dd, $J=9.9,2.5,1 \mathrm{H}$), $5.43-$ 5.38 (om, 3H), $4.98(\mathrm{~m}, 1 \mathrm{H}), 4.77(\mathrm{~d}, J=3.2,1 \mathrm{H}), 4.73-4.65$ $(\mathrm{m}, 2 \mathrm{H}), 4.44(\mathrm{dd}, J=10.0,3.2,1 \mathrm{H}), 4.30(\mathrm{br} \mathrm{t}, \mathrm{J} \sim 5,1 \mathrm{H})$, 4.06 (dq, $J=6.6,3.2,1 \mathrm{H}), 4.03(\mathrm{~s}, \mathrm{OH}), 3.97(\mathrm{~d}, J=6.3,1 \mathrm{H})$, 3.93 (br s, 1H), 3.87-3.82 (om, 2H), 3.71-3.58 (om, 2H), 3.49 (dd, $J=10.0,1.3,1 \mathrm{H}$), $3.44(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{q}, J=$ $2.2,1 \mathrm{H}), 3.21(\mathrm{t}, J=9.0,1 \mathrm{H}), 2.52(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{br} \mathrm{d}, \mathrm{J} \sim 7$, OH) $2.31-2.21(\mathrm{om}, 4 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.05-2.00(\mathrm{om}, 2 \mathrm{H})$, 1.87 (br s, 3H), $1.77(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.45(\mathrm{om}, 6 \mathrm{H}), 1.49(\mathrm{br} \mathrm{s}$, $3 \mathrm{H}), 1.24(\mathrm{~d}, J=6.2,3 \mathrm{H}), 1.16(\mathrm{~d}, J=6.9,3 \mathrm{H}), 1.13(\mathrm{~d}, J=$ $6.6,3 \mathrm{H}), 0.98-0.90(\mathrm{om}, 9 \mathrm{H}), 0.89(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 173.8$, $170.7,139.7,138.0_{2}, 137.9_{7}, 136.3,135.1,127.7,124.8,120.4$, $118.3,118.0,98.7,95.8,95.0,82.0,81.1,80.4,79.3,79.1,74.9$, $73.3,68.5,68.4(2 \mathrm{C}), 67.7,67.1,65.5,56.7,56.1,48.4,45.7$, $40.5,39.8,36.7,35.2,34.5,34.3,31.9,30.6,27.5,23.6,20.3$, $20.0,18.3,17.1,16.4,15.2,13.0,12.1$. IR $\left(\mathrm{CCl}_{4}\right) \lambda_{\text {max }} 3590$, $3480,2990,2940,1712,1685,1510,1450,1380,1150,1130$, $990 \mathrm{~cm}^{-1}$. HRMS: $[\mathrm{M}+\mathrm{Li}]^{+}=920.5349$ (calcd $=920.5347$). Anal. Calcd for $\mathrm{C}_{50} \mathrm{H}_{75} \mathrm{NO}_{14}$: C, $65.70 ; \mathrm{H}, 8.27 ; \mathrm{N}, 1.52$. Found: C, $65.79 ;$ H, 7.96; N, 1.46.

Acknowledgment. We are grateful to Dr. L. F. Colwell for providing us with the high-resolution mass spectra.

Supplementary Material Available: ${ }^{1} \mathrm{H}$ NMR spectra for compounds 4, 5a, 10a, 10b, and 12 (5 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of this journal, and can be ordered from the ACS; see any current masthead page for ordering information.

[^0]: ${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, November 15, 1994.
 (1) Albers-Schönberg, G.; Arison, B. H.; Chabala, J. C.; Douglas, A. W.; Eskola, P.; Fisher, M. H.; Mrozik, H.; Smith, J. L.; Tolman, R. L. J. Am. Chem. Soc. 1981, 103, 4216.
 (2) (a) Campbell, W. C.; Fisher, M. H.; Stapley, E. O.; AlbersSchönberg, G.; Jacob, T. A. Science 1983, 221, 823. (b) Lariviere, M.; Aziz, M.; Weinmann, D.; Ginoux, J.; Gaxotte, P.; Vingtain, P.; Beauvais, B.; Derouin, F. Lancet 1985, 2, 174.
 (3) (a) Mrozik, H.; Eskola, P.; Linn, B. O.; Lusi, A.; Shih, T. L.; Tischler, M.; Waksmunski, F. S.; Wyvratt, M. J.; Hilton, N. J.; Anderson, T. E.; Babu, J. R.; Dybas, R. A.; Preiser, F. A.; Fisher, M. H. Experientia 1989, 45, 315. (b) Fisher, M. H. Pure Appl. Chem. 1990, 62, 1231. (c) Mrozik, H. U. S. Patent 4874 749, 1989. (d) Mrozik, H. H. U. S. Patent 4427 663, 1984.
 (4) (a) Dybas, R. A.; Hilton, N. J.; Babu, J. R.; Preiser, F. A.; Dolce, G. J. Top. Ind. Microbiol. 1989, Chapter 23, 203-212. (b) Lunke, M. D.; Kaufman, W. R. Exp. Appl. Acarol. 1992, 13, 249. (c) Fisher, M. H. ACS Symp. Ser. 1993, 524, 169.
 (5) The benzoic acid salt 1c has been designated as MK-244 and the hydrochloride salt 1 b has been designated as MK-243, and both are comprised of $B_{1 a}$ and $B_{1 b}$ components.

[^1]: (6) (a) Wrobel, J. E.; Ganem, B. Tetrahedron Lett. 1981, 3447. (b) Hutchins, R. O.; Su, W..Y. Tetrahedron Lett. 1984, 695. (c) AbdelMagid, A. F.; Maryanoff, C. A.; Carson, K. G. Tetrahedron Lett. 1990, 5595. (d) Barney, C. L.; Huber, E. W.; McCarthy, J. R. Tetrahedron Lett. 1990, 31, 5546.

[^2]: (7) (a) Yamada, S. J. Org. Chem. 1992, 57, 1591. (b) For acylations of avermectins using $\mathrm{Ac}_{2} \mathrm{O}$ see: Mrozik, H.; Eskola, P.; Fisher, M.; Egerton, J. R.; Cifelli, S.; Ostlind, D. A. J. Med. Chem. 1982, 25, 658.
 (8) (a) Stevens, C. M.; Watanabe, R. J. Am. Chem. Soc. 1950, 71, 725. (b) Allainmat, M.; L'haridon, P.; Toupet, L.; Plusquellec, D. Synthesis 1990, 27. (c) Morís, F.; Gotor, V. J. Org. Chem. 1992, 57, 2490.

[^3]: (10) (a) Duffault, N.; Dupin, J. P. Bull. Soc. Chim. Fr. 1966, 3205. (b) Morimoto, T.; Sekiya, M. Chem. Lett. 1985, 1371. (c) Nishiyama, K. Saito, M.; Oba, M. Bull. Chem. Soc. Jpn 1988, 61, 609. (d) Zoeckler, M. T.; Laine, R. M. J. Org. Chem. 1983, 48, 2539.
 (11) Corey, E. J.; Suggs, J. W. J. Org. Chem. 1973, 38, 3223.
 (12) (a) R3SnH: Dangles, O.; Guibé, F.; Balavoine, G.; Lavielle, S.; Marquet, A. J. Org. Chem. 1987, 52, 4984. (b) $\mathrm{H}_{2} \mathrm{O}$: Kloosterman, M.; Van Boom, J. H.; Chatelard, P.; Boullanger, P.; Descotes, G. Tetrahedron Lett. 1985, 26, 5045. (c) Acetylacetone: De Mesmaeker, A.; Hoffman, P.; Ernst, B. Tetrahedron Lett. 1989, 30, 3773. (d) Dimedone: Kunz, H.; Unverzagt, C. Angew. Chem., Int. Ed. Engl. 1984, 23, 436. (e) Amines: Genêt, J. P.; Blart, E.; Savignac, M.; Lemeune, S.; Paris, J.-L. Tetrahedron Lett. 1993, 34, 4189. (f) Formic acid: Kinoshita, H.; Inomata, K.; Kameda, T.; Kotake, H. Chem. Lett. 1985, 515. Minami, I.; Ohashi, Y.; Shimizu, I.; Tsuji, J. Tetrahedron Lett. 1985, 26, 2449 (see also ref 12e). (g) RCO ${ }_{2} \mathrm{H}$: Jeffrey, P. D.; McCombie, S. W. J. Org. Chem. 1982, 47, 587. (h) $\mathrm{NaCH}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}$: see ref 12 e . (i) $\mathrm{R}_{3} \mathrm{SiH}:$ Sakaitani, M.; Kurokawa, N; Ohfune, Y. Tetrahedron Lett. 1986, 27, 3753.
 (13) $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4} \mathrm{Pd}(0)$-catalyzed cleavage of allylic acetates using sodium borohydride has been reported: (a) Hutchins, R. O.; Learn, K.; Fulton, R. P. Tetrahedron Lett. 1980, 21, 27. (b) Keinan, E.; Greenspoon, N. Tetrahedron Lett. 1982, 23, 241. (c) Keinan, E.; Roth, Z. J. Org. Chem. 1983, 48, 1769.
 (14) Using $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4} \mathrm{Pd}(0)-\mathrm{NaCNBH}_{3}$, the cyclic allylic carbonate derivative of a cis-1,2-dihydroxy-3-cyclohexene was easily cleaved, but the corresponding diethyl carbonates were reported to be inert to the reaction conditions: Sutherland, J. K.; Tometzki, G. B. Tetrahedron Lett. 1984, 25, 881.

[^4]: (15) Poor behavior on a variety of reversed phase columns led us to develop an HPLC assay of the reduction products of the ketone. Prior to workup, the oxidation was assayed for completeness by TLC (Analtech Uniplate, silica gel GF, ethyl acetate:hexanes (1:1); R_{f} alcohol $=0.35$; ketone $=0.65$) .

